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Abstract—The activity of ensembles of neurons within the
hippocampus is thought to enable memory formation, storage,
recall, and potentially decision making. During offline states
(associated with sharp wave ripples, quiescence, or sleep), some
of these neurons are reactivated in temporally-ordered sequences
which are thought to enable associations across time and episodic
memories spanning longer periods. However, analyzing these se-
quences of neural activity remains challenging. Here we build on
recent approaches using latent variable models for hippocampal
population codes, to detect so-called “replay events”, and to
build models of hippocampal sequences independent of animal
behavior. We demonstrate that our approach can identify the
same replay events as traditional Bayesian decoding approaches,
and moreover, that it can detect nonlinear remote replay events
that are difficult or impossible to detect with existing approaches.
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I. INTRODUCTION

The activity of ensembles of neurons within the hippocam-
pus is thought to enable memory formation, storage, recall,
and potentially decision making. In rodents, hippocampal
“place cells” are known to encode an animal’s location in its
environment as it explores [1]. Hence, populations of these
neurons fire in temporally-ordered sequences corresponding
to the spatiotemporal trajectories the animals traverse. Of
particular interest to us are hippocampal replay events in which
neurons recapitulate their spatially-ordered sequences during
periods of quiescence or sleep (and often associated with
brief, 150–250 Hz sharp wave ripple (SWR) oscillations in
the hippocampus).

Most approaches to replay detection rely on the estimation
of behavioral templates during active behavior, followed by
comparisons of the SWR-associated replay canditate events to
the learned behavioral templates. Such an approach is critically
dependent on (i) the availability of behavioral data, as well as
(ii) the associated task complexity.

The requirement to have access to the behavioral correlates
have caused studies of hippocampal replay to be limited to
those where the behavioral correlates are well understood and
easily observable (most notably that of position); it is much
more difficult to identify sequences of non-spatial memories
e.g., sequences of odor cues. In addition, template matching
approaches quickly become prohibitive even for relatively
simple tasks, and therefore more powerful, generalizable ap-
proaches have to be considered (see e.g. [2] for an alternative

approach to template matching, where heuristic rules such as
a maximum jump distance from one frame to the next, and a
minimum end-to-end distace, were used in an open field).

Hidden Markov models (HMMs) are well suited to model
this sort of sequential activity—due in part to the Markovian
nature of spatial locomotion (e.g., our position at time t is
constrained by our position at time t − 1), but perhaps more
importantly is the fact that, by definition, there is no observable
animal behavior during candidate replay events.

Indeed, HMMs have found several uses in neuroscience
(see for example [3]), and have also been used to uncover
hippocampal population codes during awake [4], as well as
during sleep-associated activity [5]. Here, we build on these
recent approaches using latent variable models (and HMMs
in particular), to detect remote replay events in a moderately
complex environment/task (a continuous alternation task in a
w-shaped maze [6]).

We demonstrate that our approach can identify many of
the same replay events as traditional Bayesian decoding ap-
proaches, and furthermore, that it can detect nonlinear remote
replay events that are difficult or impossible to detect with
existing approaches. Moreover, our approach is not dependent
on the underlying task complexity, and does not require (or
use) the associated behavioral data, laying the groundwork for
the study of non-spatial memory.

In Section II, we briefly introduce the experimental
paradigm, along with the regression-based approach for remote
replay detection used by [6]. Subsequently, we present our
alternative HMM-based approach in Section III.

II. AWAKE REPLAY OF REMOTE EXPERIENCES

To showcase the use of HMMs in neural data analysis, we
consider the experiment presented in [6], where it was shown
that rats exhibit robust replay of remote experiences during
awake periods1.

Briefly, ensembles of principle neurons were recorded
from hippocampal areas CA3 and CA1 while three rats were
exposed to two w-shaped environments (Fig. 1 E1 and E2), in
which the rats were rewarded at the endpoint of each arm when
correctly performing a continuous alternation task. Rats were
exposed to E2 for several days before the first exposure to E1,
so that E2 was always more familiar to the animals than E1.

1The data is publically available from crcns.org [7].
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Fig. 1: Remote replay task illustration. Each day of the exper-
iment, rats were eposed to a series of contexts, including two
distinct w-shaped mazes, Environment 1 (E1) and Environment
2 (E2). Remote replay was defined as robust representations
of E1 while the animal was running in E2. Adapted from [6].

Remote replay (more specifically, awake remote replay) was
then defined as robust representations (during SWRs) of E1
while the animal was in E2, or robust representations of either
E1 or E2 when the animal was awake and in the rest box. We
will only consider remote replay of E1 while the animal was
in E2 here.

A. Regression analysis for remote replay detection

Following [6], candidate remote replay events were iden-
tified as SWRs (recorded while the animal was in E2) during
which at least 5 neurons that had place fields in E1 were active.
Candidate events were then divided into 15 ms bins, and a
Bayesian decoder with a uniform prior was used to decode
the ensemble neural activity to distributions over positions in
environment E1.

Critically, the position was first linearized in one of two
ways: (i) for events where the trajectory went to or from the
center arm, linearized position was defined as the distance from
the reward well on the center arm, and (ii) for events that
had trajectories that went from one outer arm to the other,
linearized position was defined as the distance from the upper
left reward well.

Candidate events were then scored by determining the
R2 value from a regression of [decoded, linearized] position
over time, compared to 10,000 regressions on surrogate events
where the order of the time bins were randomly permuted. A
P value for each event was then calculated as the proportion
of shuffled R2 values greater than the actual R2 value, and an
event was considered significant when P < 0.05.

Fig. 2 shows four example candidate remote replay events,
along with the spike rasters for all the place cells in E1,
and the decoded distributions over linearized position for each
time bin. Time bins with no spikes cannot be meaningfully
decoded to position, and were not included in the regression
analysis. Fig. 2.a and 2.c show clear linear movement through
the environment, and both were correctly identified as remote
replay by the regression analysis.

B. Limitations of regression analysis

Even though this regression-based analysis is effective for
finding examples of remote replay in the w-maze task, it
critically relies on (i) the linearization of position, and on (ii)
the position data being available. It is non-trivial, for example,
to extend this analysis to less constrained or more complex
environments (such as open fields), or to other behavioral

(a) Linearized remote replay candidate 1.

(b) Linearized remote replay candidate 2.

(c) Linearized remote replay candidate 3.

(d) Linearized remote replay candidate 4.

Fig. 2: (a) and (c) Examples of remote replay candidate
events that were correctly classified as [significant] remote
replay by the regression-based analysis. (d) An example of
a candidate remote replay event that was correctly classified
as non-significant. (b) An example of a remote replay event
that was misclassified as nonsignificant because it exhibited
nonlinear trajectory behavior. In each panel, the spike raster
is shown on the left, with the decoded linearized position
distribution for each time bin shown on the right, along with a
cartoon representation of the decoded trajectory in the w-maze.

correlates that are not easily observable (such as sequences
of odor cues, or other sequences of episodic memory).

It is with these more complex tasks in mind that we set
out to develop an approach that (i) generalizes trivially to more
complex environments and tasks, and (ii) that can work in the
absence of observable behavioral correlates. We demonstrate
that the HMM can be used to achieve both of these goals.

III. HIDDEN MARKOV MODELS OF NEURAL ACTIVITY

HMMs are statistical models where the systems being mod-
eled are Markov chains (or more generally Markov processes)
with unobserved or latent states. HMMs have been widely
used for sequential pattern recognition and processing in fields
ranging from speech recognition to bioinformatics (see [8] for
an excellent tutorial introduction), and have also been used to
model neural activity in a variety of contexts [4], [9]–[14].
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In this section we loosely follow the approach and notation
presented in [4], [14].

A. Model specification

Let yt denote the observation at time t, where yt ∈ ZC is a
vector of spike counts for C hippocampal pyramidal cells. It is
assumed that the observations are sampled at discrete, equally-
spaced time intervals, so that t can be an integer-valued index,
with some associated ∆t.

We further assume that the hidden state space is discrete.
That is, St ∈ {1, . . . ,m} can take on one of m possible states.
In our spatial navigation context, each possible state can be
thought of as loosely corresponding to a particular location in
the environment.

To define a probability distribution over sequences of
observations, we then need to specify a probability distribution
over the initial state P (S1), with πi ≡ Pr(S1 = i), the
m×m state transition probability matrix, A, with Aij defining
P (St = j|St−1 = i), and the output or emissions model
defining P (yt|St). We have found that a Poisson emissions
model worked well.

More specifically, we assume Poisson firing statistics for
each spike train, so that the emission probability for the
ith state is modeled by a spatially varying (state-dependent)
multivariate Poisson process:

P (yt|St = i; θ) =

C∏
c=1

P (yc,t|St = i; θ)

=
C∏

c=1

m∏
j=1

P (yc,t|St = j; θ)St,i

=

C∏
c=1

m∏
j=1

(
exp(−λjc)λ

yc,t

jc )

yc,t!

)St,i

where θ = {π,A,Λ} are the model parameters, Λ ∈ Rm×C

are the tuning curve parameters (a spike firing rate λ for
every possible state j ∈ {1 . . .m} for each pyramidal cell
c ∈ {1, . . . C}), and St,i = 1 iff St = i, and 0 otherwise.

Finally, we assume that our model is time-invariant: that
is, we assume that the state transition probability matrix and
the output model do not change over time.

Given a training set D = {y(1)
1:T1

, . . . ,y
(N)
1:TN
}, containing

N sequences of observations, and since the training sequences
are assumed to have been drawn independently, the complete
data likelihood takes the form

P (D,S|θ) =
N∏

n=1

P
(
y
(n)
1:Tn
|θ, S(n)

1:Tn

)
P
(
S
(n)
1:Tn

)
. (1)

The model parameters θ = {π,A,Λ} can then be estimated
using standard methods such as expectation maximization,
variational Bayes, or Monte Carlo methods. We have used
the standard iterative expectation-maximization (EM) algo-
rithm [8] to learn the parameters in our models.

From here, we can use computationally efficient algorithms
(such as the “forward-backward algorithm” [8]) to compute a
“score” for any observation sequence P (yt=1:T ), as well as to
decode neural activity to the underlying state space.

B. Hidden Markov models for remote replay detection

We are primarily interested in determining when short
bursts of neural activity during SWRs encode remote experi-
ences or environments. To this end, we searched for evidence
of sequences corresponding to environment 1 (E1) while the
animal was running in environment 2 (E2), as reported in [6].
For each animal, and for each experiment day, we learned
two HMMs (one for each environment), using bouts of run
activity (animal speed > 3 cm/s), while excluding any SWRs.
We subsequently scored all the candidate remote replay events
recorded in E2, in the HMM corresponding to E1. Scoring
SWR-associated sequences from E2 in the HMM from E1
allows us to determine if the sequences are consistent with
those observed during active behavior in E1.

More specifically, we learned the HMMs using a time bin
size of ∆t = 125 ms, which is (i) short enough to capture
the behavioral dynamics of the animals while running, and
moreover (ii) it captures a full theta cycle (≈ 8 Hz in rodents).
We arbitrarily chose m = 30 states for our models, but we have
previously shown that the analyses are remarkably insensitive
to the actual choice of the number of states [15].

Similar to the regression analysis performed in [6], we
employed a time swap shuffle to determine congruence with
our HMMs. In particular, for each candidate event, we syn-
thesized 10, 000 surrogate events by randomly permuting the
observation time bins, and scoring each surrogate event in the
E1-HMM to form a shuffle distribution for that event. The P
value for the event was then defined as the proportion of the
shuffled scores that was greater than the score of the actual
event. (see e.g., 4 for some example shuffle ditributions and
the scores of the actual events). Significant events were defined
as those that had P < 0.05, as in [6].

Note that the behavioral-timescale HMMs were learned
with ∆t = 125 ms, but the candidate SWR-associated events
were binned into ∆t = 15 ms bins, as in [6]. For all the
results presented here, we did not apply any scaling to either
the events, nor the model, when scoring the candidate events.
Moreover, we found that the results were largely insensitive to
any scaling that we did try (results not shown).

IV. RESULTS

We performed both the regression-based analysis from [6]
as well as our HMM-based analysis for all animals, and all
experiment days (see Table II), but we show results for only
a single representative session (rat 2, day 3) here.

A. HMMs capture the positional code

Since our HMMs are learned during running behavior, it is
natural to expect that the latent states should somehow encode
position in their abstract representations. To better understand
the relationship between the latent state space and physical
space, we used the latent state trajectories decoded during
running with their corresponding positions to form an estimate
of the likelihood as a function of location on the maze. These
latent-state place fields (see Fig. 3) in many ways resembled
neuronal place fields and similarly tiled the extent of the w-
maze.
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Fig. 3: Latent space place fields. We decoded neural activity
during running behavior to the state space, and learned a map-
ping from the state space to physical position. The likelihood
of the animal’s position is shown for each of the m = 30 states
in our HMM from E1.

B. HMMs can identify examples of remote replay

Following [6], we identified SWR-associated candidate
events for remote replay in E2, and scored all of these events
in our E1-HMMs. In our example session, and using the
signficicance threshold of P < 0.05, we identified 26 out
of 36 candidate events as significant remote replay (72%),
in comparison to 23 out of 36 (64%) using the regression-
based analysis (see Table I). Overall, there is a 69% agreement
between the two approaches (19 + 6 out of 36).

TABLE I: Comparison between the number of significant
remote replay events obtained using regression-based and our
HMM-based approaches. Here, R2 denotes the regression-
based analysis, ‘+’ denotes significant events, and ‘-’ denotes
nonsignificant events.

N = 36 R2 + R2 −

HMM + 19 7 26
HMM − 4 6 10

23 13

C. HMMs can identify nonlinear examples of remote replay

Closer inspection of the remote replay events reveals some
interesting differences between the two approaches. In partic-
ular, the regression-based analysis requires the position on the
w-maze to be linearized (which introduces a position ambigu-
ity in one of the arms), and then requires remote replay events
to be linear traversals in this linearized space. However, using
our HMM approach, which is learned completely independent
of the position data, we do not need to concern ourselves
with the linearization, and moreover, we can identify nonlinear
remote replay events where the trajectory might back-track or
exhibit some other interesting-but-consistent behavior.

One example of such a nonlinear remote replay event that
was correctly classified by the HMM-based approach (and
misclassified by the regression analysis) is shown in Fig. 4.b.
Fig. 4 also shows three other examples of remote replay
candidates, two of which are correctly classified as significant

(a) Remote replay candidate 1. (b) Remote replay candidate 2.

(c) Remote replay candidate 3. (d) Remote replay candidate 4.

Fig. 4: (a)–(c) Examples of remote replay candidate events that
were correctly classified as [significant] remote replay by the
HMM. (d) An example of a candidate remote replay event that
was correctly classified as non-significant by the HMM. E1
and E2 denote environments one and two, respectively. In each
panel, the top row shows the decoded trajectories (using place
fields and a Bayesian decoder) in each environment, while the
bottom row shows a cartoon representation of the trajectory in
E1 (left) and the shuffle distribution obtained using the HMM
for the trajectory event (right), along with the event score
indicated by the arrow. (Note that the four example events
are the same ones as shown earlier in Fig. 2.)

Fig. 5: Example of a remote replay candidate that was classi-
fied as significant by the regression analysis, and nonsignificant
by the HMM approach. Notice that the trajectory is rather
short, making it unclear whether this is, in fact, a true example
of remote replay or not.

remote replay (Fig. 4.a and c) and one that was correctly
classified as nonsignificant (Fig. 4.d). Notice that in all the
examples shown, the candidate events are nonsensical in the
current (local) environment, E2.

The HMM also seemed to have slightly fewer false posi-
tives [than the regression-based analysis], or at least to be more
selective in the session considered here. For example, Fig. 5
shows an example event that was classified as significant by
the regression analysis, while being rejected by the HMM.
However, a comprehensive analysis of classification accuracy
(which would necessarily have to rely on subjective determi-
nations by human scorers) has not been carried out yet.
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D. Aggregated results

Results pooled across all animals, and all experiment days,
are summarized in Table II. In particular, we found 188 out of
623 (30%) significant remote replay events using our HMM
approach, and 270 out of 623 (43%) using the regression
analysis. The overall agreement between the two approaches
is therefore 69% (131 + 296 out of 623).

TABLE II: Comparison between the number of significant
remote replay events obtained using regression-based and our
HMM-based approaches for all sessions and animals com-
bined. Overall agreement is 69% (P < 0.001, Fisher’s exact
test, two-tailed).

N = 623 R2 + R2 −

HMM + 131 57 188
HMM − 139 296 435

270 353

V. DISCUSSION

It is encouraging to see the large agreement (≈ 70%)
between the regression and HMM approaches for the identifi-
cation of remote replay, especially considering that the HMM
identified additional examples of nonlinear remote replay.

We have only considered remote replay of E1 while the
animal was behaving in E2 here, but it is reasonable to expect
that we may obtain similar results when looking for remote
replay while the animal is in the rest box, as reported in [6].

It is worth emphasizing that even though we have learned
HMMs on neural data during run bouts in both E1 and E2,
we did not use any of the behavioral data (i.e., position) in
our models. Thus, in contrast to the approach presented in
[6], our HMM-based approach can be used in the absence of
behavioral data or correlates.

Indeed, we have recently shown that, given sufficient
training data during SWRs, we can learn HMMs on the
SWR-associated events directly, and still recover sufficient
information about the associated behavior [15]. In this way,
it might be possible to find instances of remote replay even
without recording the neural data (let alone the behavioral
correlates) during the remote experience.

VI. CONCLUSION

We have demonstrated how the HMM be be used to
detect remote replay without appealing to any behavioral
correlates, which in contrast to existing approaches, means
that our approach is largely independent of task complexity.
Indeed, this flexibility makes it possible to analyze a whole
new class of behaviors beyond spatial memory. Indeed, the
HMM framework presents a powerful and attractive approach
to analyze a variety of sequential tasks and phenomena in the
hippocampus and beyond.
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